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Abstract. Univariate and multivariate methods are commonly used to explore the spatial and temporal
dynamics of ecological communities, but each has limitations, including oversimplification or abstraction
of communities. Rank abundance curves (RACs) potentially integrate these existing methodologies by
detailing species-level community changes. Here, we had three goals: first, to simplify analysis of commu-
nity dynamics by developing a coordinated set of R functions, and second, to demystify the relationships
among univariate, multivariate, and RACs measures, and examine how each is influenced by the commu-
nity parameters as well as data collection methods. We developed new functions for studying temporal
changes and spatial differences in RACs in an update to the R package library(“codyn”), alongside other
new functions to calculate univariate and multivariate measures of community dynamics. We also devel-
oped a new approach to studying changes in the shape of RAC curves. The R package update presented
here increases the accessibility of univariate and multivariate measures of community change over time
and difference over space. Next, we use simulated and real data to assess the RAC and multivariate mea-
sures that are output from our new functions, studying (1) if they are influenced by species richness and
evenness, temporal turnover, and spatial variability and (2) how the measures are related to each other.
Lastly, we explore the use of the measures with an example from a long-term nutrient addition experiment.
We find that the RAC and multivariate measures are not sensitive to species richness and evenness and
that all the measures detail unique aspects of temporal change or spatial differences. We also find that spe-
cies reordering is the strongest correlate of a multivariate measure of compositional change and explains
most community change observed in long-term nutrient addition experiment. Overall, we show that spe-
cies reordering is potentially an understudied determinant of community changes over time or differences
between treatments. The functions developed here should enhance the use of RACs to further explore the
dynamics of ecological communities.

Key words: codyn; community composition; long-term data; multivariate analysis; R package; richness; spatial
variability; temporal variability.
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INTRODUCTION

The dynamic nature of ecological communities,
in which abundances of co-occurring species dif-
fer over space and change over time, makes them
simultaneously fascinating and difficult to study.
Ecological communities worldwide are impacted
by global change drivers that chronically alter
resource availability (nitrogen deposition, altered
precipitation, elevated CO2, etc.). These chronic
resource alterations are expected to have large
impacts on ecosystem functioning by altering
community structure and composition (Smith
et al. 2009, Langley and Hungate 2014, Polley
et al. 2014, Koerner et al. 2015). Thus, it is imper-
ative that ecologists have the tools needed for
predicting and understanding patterns of com-
munity change in response to global environmen-
tal drivers. Given significant concerns about the
global biodiversity crisis (Sala et al. 2000), species
richness is often used as one common measure of
change at the local scale (Vellend et al. 2013, Dor-
nelas et al. 2014). Yet, species richness alone can
be an insensitive measure of ecological dynamics
(Wilsey et al. 2005, Avolio et al. 2015, Hillebrand
et al. 2017, Jones et al. 2017) because it does not
take into account identity or abundance poten-
tially masking complex dynamics, such as turn-
over and reordering of dominant species within
communities (Collins et al. 2008, Avolio et al.
2015, Hillebrand et al. 2017). Conversely, multi-
variate measures that take into account species
identity, such as a dissimilarity index, are abstract
and do not detail what exactly about the commu-
nity is different (Collins et al. 2008). There is a
need for methodological approaches to bridge
multivariate measures with community structure
and composition.

We suggest that using rank abundance curves
(RACs) and their derived measures can yield
important information in combination with spe-
cies richness and dissimilarity to more clearly elu-
cidate the complexities of community change
across space and over time, and allow for general-
izations across different communities (Avolio
et al. 2015). In the mid-20th century, RACs became
a common way to study communities (MacArthur

1957, Whittaker 1965), because they serve as a use-
ful visualization tool to understand how commu-
nities differ in number and abundances of species.
They are relatively easy to create using com-
monly collected species abundance data (e.g.,
cover, biomass, point intercept, and abundance;
Tokeshi 1993, McGill et al. 2007, Ulrich et al.
2010). RACs have mostly been utilized to com-
pare shapes of the curve (curve fitting; Fattorini
2005, Mac Nally 2007, McGill et al. 2007, Ulrich
et al. 2010, McGill 2011, White et al. 2012). Yet,
RACs yield detail on both community composi-
tion and structure when attention is paid to spe-
cies identity (i.e., the rank and abundance of each
species are tracked through time). Comparisons
of how RACs differ over space and change over
time can provide additional insight into
community dynamics that would not be evident
by changes in species richness or dissimilarity
alone (Avolio et al. 2015). However, approaches
to studying RACs—both long-term temporal
changes and spatial differences—are lacking
beyond investigating the shape of the curve.
We have three objectives in this paper. First, we

review common ways of measuring community
dynamics and build upon existing approaches for
studying RACs by introducing new functions in
an update to the library(“codyn”) R package
V.2.0.0 (Hallett et al. 2018) in R (Table 1). We
think that this update will strengthen and stream-
line comparison of communities by incorporating
several functions to measure univariate (e.g., spe-
cies richness), multivariate (e.g., distance between
centroids), and RACs (e.g., reordering) changes
over time or differences over space. Second, we
use two datasets, one simulated and one observa-
tional, to examine how a variety of community
measures are related to one another when study-
ing changes in community composition and
structure over time. This investigation of com-
monly used multivariate and univariate and
underused RAC measures highlights the utility of
a comprehensive approach for comparing com-
munities. Lastly, we use a long-term experimental
dataset from native tallgrass prairie to illustrate
how communities differ in space and change over
time in response to altered resource availability.
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In this example, we demonstrate how to integrate
multivariate measures with RACs to study com-
munity dynamics. Our overarching goal is to pro-
vide an analytical roadmap that includes RAC
measures for enhancing our understanding of the
spatial variability and temporal change inherent
in ecological communities.

MEASURES FOR STUDYING COMMUNITIES

Community datasets
A community dataset is often visualized as a

matrix with two fundamental components of the
species assemblage, species identities (i.e., species
names), and their associated abundances, as sepa-
rate columns (Fig. 1A). Community data are typi-
cally collected from replicates arrayed in space and
often are repeatedly collected at the same location
over time. Here, replicates refer to any single

location, plots, sample, etc., in both observational
and experimental datasets. Consequently, replicate
and time are additional columns in the community
data matrix (Fig. 1A). Observational time series will
have no additional grouping of the replicates. How-
ever, experimental time series will group the repli-
cates into treatments, requiring a fifth column in
the data matrix for treatment designation. Thus, we
have a data matrix with four columns (time, spe-
cies, abundance, and replicate) and a fifth optional
column that represents treatments (Fig. 1A).
Community datasets collected in space and over

time offer two primary pathways for measuring
and comparing differences in species composition.
First, a single community (which can be a single
sample (e.g., a 1-m2 plot) can be compared to itself
over time (Fig. 1B: black arrows), which we will
hereafter call change. Conversely, communities of
different treatments can be compared to one another

Table 1. Community change functions in the library(“codyn”) V2.0.3 release introduced in this paper.

Comparison CODYN function Output

None—done for
each replicate at a
single point in
space and time

community_structure (df, time.var, abundance.var,
replicate.var, metric)

Calculates species richness and evenness (using
specified metric) for each replicate

community_diversity (df, time.var, abundance.var,
replicate.var, metric)

Calculates species diversity (using specified metric)
for each replicate

Change—tracks
changes of a
replicate through
time

RAC_change (df, time.var, species.var,
abundance.var, replicate.var, reference.time)

Calculates changes in species richness, evenness,
species’ ranks, gains, and losses for each replicate

abundance_change (df, time.var, species.var,
abundance.var, replicate.var, reference.time)

For each species in a replicate, calculates changes in
abundance

curve_change (df, time.var, species.var,
abundance.var, replicate.var, reference.time)

Calculates changes in the shape of the RAC curve
for each replicate

multivariate_change (df, time.var, species.var,
abundance.var, treatment.var, reference.time)

Calculates changes in community composition and
dispersion of all replicates

Difference—
compares
differences
between
replicates at a
single point in
time

RAC_difference (df, time.var, species.var,
abundance.var, replicate.var, treatment.var, pool,
block.var, reference.treatment)

Calculates differences in species richness, evenness,
species’ ranks, shared species between paired
samples†

abundance_difference (df, time.var, species.var,
abundance.var, replicate.var, treatment.var, pool,
block.var, reference.treatment)

Calculates differences in abundance for each
species in paired samples†

curve_difference (df, time.var, species.var,
abundance.var, replicate.var, treatment.var, pool,
block.var, reference.treatment)

Calculates differences in the shape of the RAC
between paired samples†

multivariate_difference (df, time.var,
species.var, abundance.var, treatment.var,
reference.treatment)

Calculates differences in community composition
and dispersion of all replicates between
treatments

Notes: RAC is rank abundance curve. The default for measures of change calculates changes between paired consecutive
years; however, a reference year can be specified (e.g., the first year of data collection can be compared to all other years). The
default for the measures of difference calculates differences between all pairwise treatments; however, a reference treatment
can be specified (e.g., the controls can be compared to treatments only).

†For the difference functions (RAC_difference(), abundance_difference(), and curve_difference()), it is necessary to specify
how replicates should be compared at a given point in time. There are three options: (1) For studies with an experimental block
design, within each block pairwise treatment comparisons are made (both block.var and treatment.var need to be specified).
(2) All replicates within a treatment can be pooled (the average of each species across all replicates is determined), and then, all
pairwise treatment comparisons are made (both treatment.var and pool = TRUE must be specified). This option results in one
comparison between each treatment; thus, there is no replication. (3) All pairwise comparisons are made between all replicates
(if treatment.var is specified the treatment that each replicate belongs to will also be output). This option results in more com-
parisons than replicate plots but results in non-independence of replicates.
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at a single time point (Fig. 1B: red arrows), which
we consider to be a measure of difference. Both
approaches are informative and yield complimen-
tary insights into the spatial vs. temporal dynamics
of ecological communities, as discussed below.

Measures of temporal change include change
within a replicate between consecutive time
points (e.g., Collins et al. 2000). Temporal change
measures can also include comparisons of future
time points to the original sample (Avolio et al.
2014, Dornelas et al. 2014). Measures of spatial
differences include comparisons of how two

replicates sampled at the same time differ from
one another. In some experimental designs, it is
predetermined which replicates to compare across
treatments (block design) but in other cases this is
less clear. For datasets that have a single or multi-
ple treatments, there are three ways to compare
differences: (1) Control and treatment plots can be
paired in a block design, (2) all pairwise control–
treatment comparisons can be made, with correc-
tion for multiple comparisons (Dunnett 1955,
1964), or (3) the abundance of all species in a treat-
ment across replicates can be averaged, allowing
for a single comparison between treatment and
control plots. The first approach is ideal, the sec-
ond results in non-independence of difference
measures, and the third results in a single compar-
ison prohibiting frequentist statistical tests.

Measures for comparing rank abundance curves
Five aspects of change in RACs can be quanti-

fied and compared (Fig. 2): (1) species richness, the
length of the RAC; (2) evenness, measured as the
slope of the RAC, where steeper slopes reflect
greater dominance, or flatter slopes indicate greater
evenness (Whittaker 1965); (3) species rank change
(or reordering), measures how much species ranks
decrease or increase over time (e.g., mean rank
shift in Collins et al. 2008); and (4) species loss and/
or (5) species gain (e.g., together loss and gains are
turnover as in Cleland et al. 2013), both of which
are underlying changes in species richness.

RAC_�() functions
The insight from RAC analysis is potentially

very powerful, but currently there are not stan-
dard analytical approaches. Measures of RACs
can be applied to both observational and experi-
mental data. We developed two functions, RAC_-
change() and RAC_difference(), to study RACs
over time or space (Table 1). See Appendix S1 for
a RAC change example and Appendix S2 for a
RAC difference example. These functions extend
the existing rank_change() and turnover() func-
tions in codyn (Hallett et al. 2016).
Species richness comparisons.—Species richness

(alpha diversity), the number of species at a
given point in space and time, is a simple and
widely used measure to describe biodiversity
patterns. Our community_structure function cal-
culates species richness (Table 1) for a sample at
a single point in space and time. Species richness

Fig. 1. (A) A hypothetical community dataset that
records the time and replicate of the species and their
abundances. (B) Long-term experimental community
data can be analyzed two ways: (1) How a community
(or replicate within a community) changes over time
(black arrows) or (2) how a community (or replicate
within a community) differs (red arrows) between
samples, such as control (C) and treatment (T) repli-
cates, at a given point in time. Both are informative
and give rise to unique insights.
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change, DS, in the RAC_change() function is cal-
culated as

DS ¼ ðStþ1 � StÞ=Stot;
where S is the richness of a replicate, t is time,
and Stot is the total number of unique species in
both time periods. Species richness difference,
S.D., in the RAC_difference() function is calcu-
lated as

S.D. ¼ ðSx � SyÞ=Stot;
where x and y are the two replicates being com-
pared, and Stot is the total number of unique spe-
cies in both replicates. Since DS and S.D. are
proportions, they are bound between �1 and 1,
where larger values indicate greater changes in
species richness. A value of 1 or �1 would occur
if there were no species in one the replicates
being compared.

Evenness comparisons.—Evenness is a measure
of the distribution of species abundances in a
community. A perfectly even community is one in
which all species have the same abundances,
while an uneven community is one where a few
species have high abundance and most species

have low abundances. Ideally, evenness indices
will be independent of species richness. A com-
monly used evenness measure, J (Shannon’s or
Pielou’s evenness), should not be used as it is
highly dependent on species richness (Smith and
Wilson 1996). Using our community_structure
function (Table 1), the user can specify one of
three evenness measures: (1) inverse of Simpson’s
D, a commonly used evenness measure (Smith
and Wilson 1996); (2) EQ, a measure of the slope
of a RAC (Smith and Wilson 1996); and (3) Evar, a
measure of the variance of abundance values
(Smith and Wilson 1996). See Appendix S3 for
equations and more details. Measures of evenness
are bound between 0 (very uneven community)
and 1 (perfectly even community). A key differ-
ence between these measures is that Simpson’s
evenness results in an evenness of 1 when there is
a single species in a community—a flaw in the
measure, as the concept of evenness does not
apply to a community with only a single species.
Thus, we suggest using EQ or Evar as a preferred
measure of evenness because they are both fairly
intuitive and in our functions result in a NAwhen
there is only one species in a community. Here,

Fig. 2. Demonstration of the five ways a community can change over time as measured by rank abundance
curves. Please note that although species richness (denoted as S in the bottom left corner of each panel) is not
depicted, species richness also changes with species losses and species gains and that concurrent gains and losses
can result in no richness change.
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we used Evar for all the example analyses and in
our RAC_change() and RAC_difference() func-
tions because it results in a more normal distribu-
tion of values than EQ (See Smith and Wilson
1996 for a detailed comparison of evenness mea-
sures). Evenness change, DE, is in our RAC_
change() function using Evar and is calculated as

DE ¼ ðEtþ1 � EtÞ;
where E is the evenness of a replicate, and t is
time. Evenness difference, E.D., in the RAC_dif-
ference() function is calculated as

E.D. ¼ ðEx � EyÞ;
where x and y are the two replicates being com-
pared. DE and E.D. are bound between �1 and 1,
where larger negative values indicate greater
decreases in evenness.

Rank comparisons.—Rank change (e.g., species
reordering) is a measure of how much species
abundances change over time relative to each
other. In the RAC_change() function, rank change
is similar to the rank_shift() function in the codyn
package (Hallett et al. 2018) with two improve-
ments. First, our mean rank change is divided by
the size of the species pool making the measure
independent of species richness. Second, our mea-
sures allow for species that are not in two consec-
utive time points to be included (see Appendix S1
for details). In the RAC_change() function, rank
change, DR, is calculated as

lR ¼

PN

i
ðjRi;tþ1 � Ri;tjÞ

Stot
(1)

DR ¼ lR
Stot

; (2)

where Ri,t is the rank of species i at time t, Ri,t+1 is
the rank of species i at time t + 1, and Stot is the
total number of unique species in both time peri-
ods. For DR, the average rank change, lR, is
divided by Stot. In the RAC_difference() function,
rank difference, R.D., compares the rank of spe-
cies between two replicates and is calculated as

lR:D: ¼

PN

i
ðjRi;x � Ri;yjÞ

Stot
(3)

R.D. ¼ lR:D:

Stot
; (4)

where Ri,x is the rank of species Ri in replicate x,
Ri,y is the rank of species Ri in replicate y, and Stot
is the total number of unique species in both repli-
cates. Both DR and R.D. are bound between 0 and
0.5, where 0.5 occurs when there are the maxi-
mum rank changes allowed in the community.
Species turnover: gains.—A gain occurs when a

species that was absent at time t appears in time
period t + 1. In RAC_change() a gain is calcu-
lated as

G ¼ g
Stot

;

where g is the number of species gained and Stot
is the total number of unique species in both time
periods. This returns the same output as the
turnover function in library(“codyn”) with met-
ric “appearance” (Hallett et al. 2018). It is bound
between 0 and 1 and is the proportion of species
that are gained.
Species turnover: losses.—A loss occurs when a

species that was present at time t disappears in
time period t + 1. In RAC_change() a loss is cal-
culated as

L ¼ l
Stot

;

where l is the number of species lost and Stot is
the total number of unique species in both time
periods. It is bound between 0 and 1 and is the
proportion of species that are lost. This returns
the same output as the turnover function in
library(“codyn”) with metric “disappearance”
(Hallett et al. 2018).
Species difference.—Sometimes it is not possible

to infer gains or losses between samples. For
example, if a species was never in a treatment
plot, but always in the control plot, it cannot have
been lost in the treatment. Thus, we calculate a
species difference measure in the RAC_difference
() function instead of gains/losses. The concept of
species differences is most simply understood as
Jaccard’s index, which is sometimes used as a
measure of beta diversity and is calculated as the
number of species that are exclusive to either of
two communities divided by the total number of
species across both communities. However, as has
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been documented with dissimilarity-based mea-
sures of beta diversity, richness differences influ-
ence the outcome of species difference (Baselga
2010, Carvalho et al. 2012). Carvalho et al. (2012)
mathematically separated richness differences
from species substitution, which summed
together equals the Jaccard index. Here, we use
the species substitution equation (termed b�3 in
Carvalho et al. 2012) as our measure of species
differences. Species difference is calculated as

Sp.D. ¼ 2 � minðb; cÞ
a þ b þ c

;

where a is the total number of shared species, b is
the number of species that are unique to the first
community, and c is the number of species that
are unique to the second community. When
Sp.D. and the absolute value of richness differ-
ences (S.D.) are added, the result is Jaccard’s
index. Thus, our measure of species differences
reflects only compositional differences and not
richness differences between two communities.

Curve_�() functions
We developed a new way to compare the shape

of two RACs. There is an impressive body of liter-
ature on understanding the shape of RACs (or
species/rank abundance distributions; SADs or
RADs). As noted by Tokeshi (1993), there is a long
history of fitting various distributions, such as a
log normal or Poisson distribution, to individual
RACs (McGill 2011), and there is a robust litera-
ture on the best approach (Fattorini 2005, McGill
et al. 2007, Ulrich et al. 2010, White et al. 2012).
We take a slightly different approach here and ask
what is the difference in the curve shape between
two communities? A RAC summarizes the abun-
dance of each species in a community and thus
simultaneously incorporates species richness and
evenness. Our approach was modeled after D�

developed by Collins et al. (2009) to study differ-
ences between rank occupancy–abundance pro-
files. Briefly, for each RAC we calculate (1) the
relative rank of a species, where the relative rank
of 1 is assigned to the least abundant species and
(2) the cumulative community abundance when
adding each species to the sample from least to
most abundant. We then plot relative rank vs.
cumulative abundance using a stepwise function
(denoted below as fk,t(r), for relative rank r of the

community at location k and time t) and sum the
area between the two curves (see Appendix S4 for
a worked example). The summed area between
the two curves is the curve change or curve differ-
ence depending on if the comparisons are tempo-
ral or spatial, respectively. Curve changes or
differences are larger when using raw instead of
relativized abundance data. Curves can be com-
pared for a single replicate over time, and in our
function curve_change(), it is calculated as

DCurve ¼
XN

i¼1

j fk;tðriÞ � fk;tþ1ðriÞjðri � ri�1Þ;

where N is the number of unique relative ranks
among both RACs and the set r is built by taking
the union of relative ranks calculated for each
RAC, from relative rank 0 to 1, and sorting the
result from low to high. RAC curves can also be
compared between replicates at a given point in
time using our curve_difference() function. The
difference between the community at location k
from the one at k0 is likewise calculated as

C.D. ¼
XN

i¼1

j fk;tðriÞ � fk0;tðriÞjðri � ri�1Þ:

Our approach allows for statistical comparison
among treatments. For example, in a multi-year
experiment, one could compare the change in
curve shape of controls vs. treated plots using a
simple t-test.

Measures for performing multivariate
comparisons
Multivariate methods generally use species

abundance or presence/absence data to assess
changes in community composition over time.
Here, we only consider using abundance data as it
is necessary for all the other community functions
that we have developed. Multivariate methods
typically involve principal coordinate analysis
(PCoA) of community abundance data and have
been extensively reviewed (see McCune and Grace
2002, Anderson 2006, Anderson et al. 2008, Legen-
dre and Legendre 2012). Principal coordinate anal-
ysis begins by calculating a matrix of pairwise
dissimilarities (see Anderson et al. 2011 for a com-
parison of dissimilarity indices) between commu-
nities from distinct replicates, treatments, times, or
any combination of these. This matrix can be used
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to mathematically determine a point representing
each community in a lower-dimensional space,
that is, a scatter plot with fewer axes than spe-
cies. When truncated to sufficiently few axes for
actual plotting, the distance between points
approximates the dissimilarity between commu-
nities (McCune and Grace 2002). When not trun-
cated—excepting certain cases detailed below—
the distance between points exactly equals their
dissimilarity. Here is the main utility of PCoA: It
translates ecologically meaningful indicators,
such as the Bray-Curtis dissimilarity, to a space
where centroids of clusters and distances associ-
ated with those centroids are also meaningful.
Clusters are typically a group of replicates from
the same treatment or time period, so the two
multivariate patterns typically quantified are the
distances between centroids and the distances of

replicates from their centroid (a.k.a. dispersion,
see Fig. 3). These two values correspond, respec-
tively, to comparisons between-group means and
within-group variances of univariate analyses
(Avolio et al. 2015). Both are measures of beta
diversity (dissimilarity of communities), where
distance between centroids is turnover beta
diversity, and dispersion is variation beta diver-
sity (Vellend 2001, Anderson et al. 2011, Avolio
et al. 2015). We provide functions for these mul-
tivariate measures to compare changes in a com-
munity over time (multivariate_change()) or to
compare differences between treatments at a
given point in time (multivarite_difference()).
Our multivariate_change() function is similar in
concept to a recent method development by
Legendre (2019) that quantifies the dissimilarity
between the composition of a replicate over time

Fig. 3. Example of multivariate community measures. In this figure, there are several replicates in groups A
and B, which can represent two time points of the same sample location or two treatments at a single point in
time. The length of the black arrow between the two centroids approximates the dissimilarity between an aver-
age community within each group, a measure of composition dissimilarity. The length of the smaller blue arrows
between replicates and their group centroids approximates the dissimilarity of replicates from their within-group
average, a measure of community dispersion. If all of the axes in multivariate community space could be visual-
ized, the arrow lengths would be exact measures rather than approximations.
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rather than distance between centroids of all
replicates over time.

Multivariate_�() functions
Composition: distance between centroids.—Once

the PCoA is computed, pairwise Euclidean dis-
tance can be used to quantify shifts in the cen-
troids through time (compositional change) or
differences between two treatments (composi-
tional difference), except in cases where the calcu-
lated dissimilarity matrix dictates a complex space
as we detail below. Our new multivariate_change
() and multivariate_difference() functions (Table 1)
use the Bray-Curtis dissimilarity, which does in
some cases produce dissimilarity matrices with
negative eigenvalues, resulting in complex space
in a PCoA. As in principal component analysis,
eigenvalues from PCoA are weights on their corre-
sponding axes, and negative weights have no clear
interpretation, as has been long recognized
(Legendre and Anderson 1999, McArdle and
Anderson 2001, Anderson et al. 2008, Legendre
and Legendre 2012). Whether negative eigenval-
ues are produced or not, the multivariate_�() func-
tion takes the group mean as the centroid and
then calculates the sum of squared differences
along every principal coordinate axis for specified
centroid pairs. When the space is not complex
(e.g., no negative eigenvalues), the functions then
return the square root of this summation, which is
just the Euclidean distance. When the space is
complex, the square root is returned if the sum is
non-negative (Anderson 2006) and NA is returned
if the sum of squares is negative, because as stated
above this has no clear interpretation. Anderson
(2006) does not address this last situation, except
to say that a negative sum of squares is possible
but unlikely. The lack of consensus here, demon-
strated by contrasting behavior of the vegan pack-
age’s betadisper()(Oksanen et al. 2018; V2.4-6),
which returns a non-negative value as a distance,
and Primer7’s PERMDISP procedure (V7.0.13),
which returns zero, leads us to instead report a
missing value.

Dispersion: dispersion around centroids.—The
average distance from the group centroid to
each replicate in the group is a measure of dis-
persion, or within-group heterogeneity, and
related to the total variance. In the multivari-
ate_change() and multivariate_difference()

functions, the method for dispersion compar-
isons proceeds as above for centroid compar-
isons, but calculates the sum of squared
coordinate differences between each replicate
and its centroid. If all sums are positive, then
we return the mean of their square root, but if
one sum is negative, we return NA for the
reason described above. These averages quan-
tify dispersion, and the absolute difference is
reported as dispersion change or dispersion dif-
ference, depending on whether the pairing cor-
responds to change of a community over time
or to a comparison between treatments.

THE RELATIONSHIP AMONG RAC AND
MULTIVARIATE MEASURES, AND THEIR
SENSITIVITY TO SPECIES RICHNESS AND
EVENNESS

Two fundamental aspects of a community,
the species present and their abundances, are
measured using species richness and evenness.
Other measures of describing communities in
space or over time ideally would be indepen-
dent of species richness and evenness and cap-
ture additional attributes of the community.
Recently, Ulrich et al. (2018) demonstrated that
richness is correlated with many community
measures. It is important that each measure
used to quantify an aspect of a community is
uniquely informative and not redundant with
other ways of measuring communities. Addi-
tionally, the community measure should not be
influenced by data collection methods. We used
two datasets to explore (1) how RAC and mul-
tivariate community change and difference
measures are affected by species richness and
evenness, and (2) how the community change
measures are related to one another. All code
used is available on github (mavolio/RACs_pa-
per).

How are RAC and multivariate measures affected
by species richness and evenness?
Methods.—We drew random samples from cor-

related multinomial distributions to create a sim-
ulated dataset. We specified three levels of
species richness (5, 20, and 50 species) for each of
three levels of evenness (low, mid, and high).
Evenness differences were created with a
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parameter that controls the difference in sam-
pling probabilities of each species. Thus, we cre-
ated nine simulated communities covering a
wide range of species richness and evenness
combinations (see Appendix S5 for methods).
For each of these nine richness-evenness combi-
nations, we also simulated two well-studied
aspects of community variability (Collins et al.
2018a) in all possible combinations: (1) spatial
variability, a measure of community heterogene-
ity or beta diversity; and (2) temporal variability,
a measure of compositional change over time or
turnover. We simulated these aspects of variabil-
ity using a parameter that controls temporal
autocorrelation and one that controls correlation
between replicates at each time point (see
Appendix S5: Table S1 and Fig. S1). For each of
36 unique simulation scenarios (three richness
levels, by three evenness levels, by four temporal
and spatial variability settings), we generated 10
simulated datasets, each containing 10 replicate
communities (e.g., plots) sampled at 10-time
steps. We averaged over the 10 simulated data-
sets to create one summary for each of the 36 sce-
narios, with 10 replicate communities that were
sampled 10 times. To study measures of change,
we calculated Pearson’s product–moment corre-
lation between the simulated species richness
and evenness of the community at time 1 with
the average change across all replicates in the
community from time 1 to time 2 (n = 324). To
study measures of difference, we randomly split
the replicates into two treatments and then used
the pool = T option in RAC_ and curve_differ-
ence() and correlated differences between the
treatments with the simulated species richness
and evenness at that time point. We did not
assess correlations with species richness or even-
ness change or difference as this is what we sim-
ulated to be held constant and are not
informative in these simulations.

Results.—Species richness and evenness of a
community rarely affected the RAC and multi-
variate measures of community change and dif-
ference (Table 2; Appendix S6). For the change
measures, only curve change was negatively
correlated with species richness and evenness.
For the difference measures, dispersion differ-
ence was negatively correlated with species
richness and evenness, and curve difference
was negatively correlated with species richness.

The effect of richness and evenness of a com-
munity on the degree of curve change are not
surprising, as curve change only accounts for
the shape of the RAC, which is affected by the
length (number of species) and steepness (even-
ness) of the RAC. What drives the influence of
species richness and evenness on dispersion
difference is less clear. We also found the mea-
sures clearly differentiated between the com-
munity types (Appendix S6: Table S1),
demonstrating that these measures are addi-
tional descriptors of spatial and temporal com-
munity dynamics; when there are large
temporal changes, the measures of change are

Table 2. The relationship between species richness and
evenness of a community with RAC and multivari-
ate measures of community change, using the simu-
lated dataset.

Community measure
Correlation across
community types

Measures of change
Effect of species richness
Rank change �0.039
Gains/Losses 0.007
Compositional change 0.025
Dispersion change �0.013
Curve change �0.442*

Effect of evenness
Rank change 0.114
Gains/Losses 0.024
Compositional change �0.115
Dispersion change �0.017
Curve change �0.270*

Measures of difference
Effect of species richness
Rank difference �0.030
Species differences �0.050
Compositional difference 0.038
Dispersion difference �0.386*
Curve difference �0.779*

Effect of evenness
Rank difference 0.060
Species differences 0.034
Compositional difference �0.047
Dispersion difference �0.363*
Curve difference �0.040

Notes: For the measures of difference, we pooled the repli-
cates into their respective treatments (replicates were split
between two treatments). Shown are correlation coefficients
(r), bold, and N = 324 for all correlations. See Appendix S6
for figures of these correlations.

* P < 0.001.
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informative whereas measures of difference are
informative with large spatial differences.

How are the RAC and multivariate change
measures related to one another and affected by
data collection methods?

Methods.—For real-world ecological data, we
used the codyn dataset that contains spatial and
temporal abundance data for 66 communities
ranging from primary producers to secondary
consumers (Collins et al. 2018b). First, we exam-
ined the distribution of all change measures and
correlations between them across all communi-
ties and time points (n = 1844). We used the
absolute value of species richness and evenness
change because we were not interested in the
direction of change overtime, just the capacity

for change. Next, to examine how the measures
related to data collection methods, we calculated
the average of each change measure for each
community and correlated that value with the
spatial extent of the experiment, the number of
replicates, and the size of the replicate (n = 66).
The codyn dataset includes only observational
studies, so no measures of difference could be
calculated and assessed.
Results.—Overall, there is considerable vari-

ability in how communities are changing in these
observational datasets (Fig. 4, diagonal). Species
richness, evenness, and curve changes are right
skewed, indicating that most communities
observe little change in these measures while
rank and dispersion changes are normally dis-
tributed, demonstrating that there is great vari-
ability among communities in how these

Fig. 4. Correlations among measures of community change with the codyn dataset (https://doi.org/10.6073/
pasta/ef4dbad515813be74404a6a87af98f00). Shown are the absolute values from species richness and evenness
change. Top triangle is the correlation coefficient (r), and asterisks denote a significant correlation at P < 0.001.
N = 1863 for all correlations. Bottom triangle is the correlation plot with the points colored by taxa. Diagonal are
the histograms of the data. N = 1844 for all correlations and histograms.
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measures change. Composition change, gains,
and losses are all intermediate, with a lesser
degree of a right skew. Many of the measures
were correlated with one another; however, no
measure was redundant with another measure
with 85% of the correlation coefficients being
<0.5 (Fig. 4, upper triangle). Comparing the mea-
sures of RAC changes with the other multivariate
measures, we found rank change was most corre-
lated with compositional change followed by
species gains and losses. This is not a mathemati-
cal artifact, because in the simulated dataset,
compositional change is similarly correlated with
rank changes (r = 0.73) as it is with species gains
and losses (r = 0.69). This finding may suggest
that reordering, rather than species gains and
losses, is a dominant process in natural commu-
nities. Curve change was correlated most
strongly with changes in evenness and species
richness, which is intuitive as curve change inte-
grates the space of the RAC—a graphical repre-
sentation of the evenness and richness of a
community. For the experimental parameters,
only composition change was positively corre-
lated with spatial extent, where larger composi-
tional changes can be detected in experiments
that span a greater area (Table 3).

WORKED EXAMPLE IN AN EXPERIMENTAL
CONTEXT

Next, we apply RAC and multivariate change
and difference measures to a long-term nitrogen
and phosphorus addition experiment in tallgrass
prairie at the Konza Prairie Biological Station

near Manhattan, Kansas, USA (see Avolio et al.
2014, Koerner et al. 2016 for details). In 2002,
pre-treatment data were collected, and commu-
nity composition data have been collected annu-
ally thereafter. Here, we investigated community
change from the pre-treatment year, to the 9th
year of the experiment (2011). To show the versa-
tility of the new R functions for multiple compar-
isons, we focus on three of the eight treatments
in the experiment: control plots (C), plots

Table 3. Influence of experimental parameters on mea-
sures of change, using the codyn dataset.

Measures of change
Number of
samples

Spatial
extent

Sample
size

Species richness change 0.180 �0.003 �0.194
Evenness change �0.195 �0.165 0.249
Rank change 0.018 0.366 �0.196
Species gains 0.075 0.371 �0.253
Species losses 0.083 0.342 �0.239
Compositional change �0.075 0.541* �0.044
Dispersion change �0.079 0.050 �0.028
Curve change 0.170 �0.212 0.035

Notes: Shown are the correlation coefficients (r) between
the community measures and experimental parameter.
N = 66 for all correlations.

* P < 0.001.

Fig. 5. In a long-term nutrient addition experiment
(see Worked Example in an Experimental Context for
details), compared with the controls (A) nine years of
nitrogen (B) or nitrogen and phosphorus (C) additions
resulted in a change in the composition and dispersion
of six replicate tallgrass prairie communities.
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receiving 10 g/m2 of nitrogen alone (N), and
plots receiving 10 g/m2 of nitrogen plus 10 g/m2

of phosphorus each year (N+P).
Over 9 yr, the composition of the community

changed in response to N and N+P additions,
but there was greater dispersion among N+P-
treated replicates compared with control repli-
cates (Fig. 5; Avolio et al. 2014, Koerner et al.
2016) in a non-metric multidimensional scaling
(NMDS) plot. We contend that important insight
is gained by studying RAC change. To do this,

we made RACs for each replicate comparing the
pre-treatment and 9th years (Fig. 6). There are
few differences in the control communities
between the pre-treatment and 9th year
(Fig. 6A); however, there were changes in domi-
nant species in the N and N+P replicates (Fig. 6B,
C). Thus, the change in composition is driven by
new species becoming dominant in the N and
N+P plots, and the change in the dispersion is
caused by differences in the abundances and
identities of those new dominant species in each

Fig. 6. Rank abundance curves for each replicate in the pre-treatment year and after nine years of nutrient addi-
tions demonstrate how the community changed for the controls (A), nitrogen (B), and nitrogen and phosphorus
(C) addition treatments. The top three species in the control plots are shades of blue, whereas the top three species
in the nitrogen or nitrogen and phosphorus plots in year nine are shades of red, all other species are green. Com-
paring the years, the identity of the dominant species shifted with nutrient additions.
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replicate. We also investigated curve shape dif-
ferences (Fig. 7), and there are no consistent dif-
ferences in the shapes of the curve.

We used the RAC_change() and RAC_differ-
ence() function to demonstrate how one might

use RAC measures to further explore community
changes beyond ordination (Fig. 5). First, we
investigated changes over time by comparing
RACs for each replicate between the pre-treat-
ment year and the 9th year of the experiment.
For RAC changes, we find greater reordering in
the treated plots compared with the control plots
(1-way ANOVA, F-value = 25.44, P < 0.001;
Fig. 8). For all other measures, there was no sta-
tistically significant difference between the treat-
ments (species richness changes: F-value = 0.1,
P = 0.906; evenness changes: F-value = 3.591,
P = 0.053; species gains: F-value = 1.116, P =
0.353; species losses: F-value = 1.966, P = 0.174).
There was also no difference for curve change (F-
value = 1.659, P = 0.223). We then investigated
differences among control, N and N+P treat-
ments in the pre-treatment year and in the 9th
year of the experiment (Table 4). To do so, spe-
cies abundances were averaged across all repli-
cates in a treatment to create a single species
pool. There were greater species richness differ-
ences between C vs. N and N vs. N+P treatments
after 9 yr of treatment compared with pre-treat-
ment, but there were similar richness differences
between C vs. N+P. Evenness differences were
similar over the course of the experiment. Rank
differences increased for all treatment compar-
isons over time, and species differences increased
for the control–treatment comparisons but not N
vs. N+P treatments. Curve differences also
increased over time. When looking over the
time-course of the experiment, 2002–2015, the
patterns are generally similar (Appendix S7).
This investigation demonstrates that large
changes in community composition and disper-
sion in the N and N+P plots shown in NMDS
panels in Fig. 5 are mostly driven by reordering
of species that already occur in the extant com-
munity.

CONCLUSIONS

Although declines in species richness are of
clear concern, there is increasing recognition that
species richness alone is not a sensitive indicator
of community dynamics (Wilsey et al. 2005, Dor-
nelas et al. 2014, Hillebrand et al. 2017). Compo-
sitional changes often occur in the absence of
changes in species richness (Dornelas et al. 2014,
Jones et al. 2017). Here, we introduce several

Fig. 7. The relative rank-cumulative abundance
curve comparisons of each replicate are shown con-
trasting pre-treatment and the 9th year of the experi-
ment for the controls (A), nitrogen (B), and nitrogen
and phosphorus (C) addition treatments.
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new functions to analyze patterns of community
change in an update to the library(“codyn”) R
package. Our focus has been specifically on
changes and differences in RACs, which we con-
tend give unique insights into patterns of com-
munity change over time and differences in
communities over space.

A potentially key understudied aspect of com-
munities is the rank of a species in the commu-
nity. Over time, the rank of a species within a
community can change resulting in species

reordering. Such changes are particularly impor-
tant if they involve shifts in the identity of domi-
nant species within the community (Collins et al.
2008, Smith et al. 2009, Koerner et al. 2016, Jones
et al. 2017). The new functions we present will
help quantify community reordering, which will
deepen our understanding of how the phe-
nomenon of species reordering contributes to
community change over time. We found reorder-
ing correlates most strongly with the multivari-
ate measure of composition change with the

Fig. 8. To better understand what is driving community changes with long-term nutrient additions in tallgrass
prairie, we investigated rank abundance curve changes and overall curve change measures, comparing the pre-
treatment year with the 9th year of the experiment. Letters denote significance at P < 0.05 based on a Tukey-HSD
test.

Table 4. Differences between control and treatment plots in the long-term N and P addition experiment in tall-
grass prairie.

Measure of difference

Pre-treatment year 9th year of the experiment

C vs. N C vs. N+P N vs. N+P C vs. N C vs. N+P N vs. N+P

Absolute richness difference 0.024 0.048 0.022 0.108 0.049 0.154
Absolute evenness difference 0.007 0.002 0.010 0.011 0.007 0.003
Rank differences 0.108 0.139 0.154 0.202 0.225 0.189
Species differences 0.341 0.333 0.444 0.324 0.390 0.308
Curve differences 4.600 5.33 9.44 28.34 31.11 4.80

Note: Abbreviations are C, control; N, nitrogen addition; N+P, nitrogen plus phosphorus addition.
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codyn dataset, and further found that it was the
only aspect of community change that differed
between the treatments in a long-term N and P
fertilization experiment. From our focused explo-
ration of RAC measures, it appears that reorder-
ing of species in the community may be a larger
driver of community change than species gains,
losses, and changes in species richness and even-
ness. Moreover, such information would not be
gained through the more common approach of
curve-fitting RACs. Thus, future work is needed
to further study the importance of reordering in
ecological communities.

The remarkable similarity of RAC shapes
within and across systems has intrigued ecolo-
gists for decades as the shapes arguably repre-
sent a simple yet highly informative
representation of community structure (McGill
et al. 2007, Ulrich et al. 2010, White et al. 2012).
Quantitative RAC curve comparisons have the
potential to reveal the ecological factors that
drive shape changes or, alternatively, verify that
shapes remain constant despite community
changes such as rank shifts or species gains and
losses. Our measure of curve shape provides a
robust way to test for curve differences between
two RACs and offers a new way to examine this
often-unexplored dimension of ecological com-
munities.

All of the measures introduced in the RAC_
change() and RAC_difference() functions are
independent of species richness and evenness
and together tell a complete story of how a com-
munity is changing over time or differs across
space. We contend that RACs give unique
insights into community dynamics. In particular,
multivariate measures are typically used to infer
community changes, and while these measures
provide insight into how a community changed,
in general, they are abstract and it is difficult to
pinpoint what aspects of the community have
changed (Collins et al. 2008, Avolio et al. 2015).
When used alongside these multivariate meth-
ods, quantifying RACs yields transparent insight
into changes within or differences between com-
munities and together gives a more complete
understanding of community dynamics.

In the unprecedented era of anthropogenic
change, ecologists are tasked with studying and
predicting how communities will respond to
novel environmental conditions. The approaches

and functions highlighted here and in the library
(“codyn”) package will offer further insight into
the dynamics of ecological communities in long-
term observational and experimental datasets.
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