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Abstract
1. Random species loss has been shown experimentally to reduce ecosystem func-

tion, sometimes more than other anthropogenic environmental changes. Yet, 
controversy surrounds the importance of this finding for natural systems where 
species loss is non-random.

2. We compiled data from 16 multi-year experiments located at a single native tall-
grass prairie site. These experiments included responses to 11 anthropogenic en-
vironmental changes, as well as non-random biodiversity loss either the removal 
of uncommon/rare plant species or the most common (dominant) species.

3. As predicted by the mass ratio hypothesis, loss of a dominant species had large 
impacts on productivity that were comparable to other anthropogenic drivers. In 
contrast, the loss of uncommon/rare species had small effects on productivity 
despite having the largest effects on species richness.

4. The anthropogenic drivers that had the largest effects on productivity nitrogen, 
irrigation, and fire experienced not only loss of species but also significant changes 
in the abundance and identity of dominant species.

5. Synthesis. These results suggest that mass ratio effects, rather than species loss 
per se, are an important determinant of ecosystem function with environmental 
change.
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1  | INTRODUC TION

Humans are dramatically altering Earth's terrestrial ecosystems 
through burning of fossil fuels, climate changes such as warming 
and the magnification of droughts and deluges, nutrient eutro-
phication, and the suppression or intensification of disturbance 
regimes (Smith, Knapp, & Collins, 2009; Steffen et al., 2015). 
In recognition that species are being lost at rates far exceeding 
those historically observed due to these and other anthropo-
genic changes (Pimm et al., 2014), numerous experiments have 
examined the impacts of simulated biodiversity loss on ecosys-
tem functioning. The widely accepted consensus from these bio-
diversity-ecosystem functioning (BEF) experiments is that loss of 
biodiversity leads to declines in ecosystem functions, such as pro-
ductivity (Cardinale et al., 2011, 2012; Hector et al., 1999; Hooper 
et al., 2012; Tilman et al., 2001), with these effects equivalent to 
or exceeding those caused by other human-driven environmental 
changes (Hautier et al., 2015; Hooper et al., 2012; Tilman, Reich, 
& Isbell, 2012). Yet, a vigorous debate continues to surround the 
interpretation of results from BEF experiments (Pillai & Gouhier, 
2019) and their relevance for ‘real-world’ ecosystems (van der 
Plas, 2019; Wardle, 2016).

By varying richness through random draws of species from a 
constrained species pool, a majority of BEF studies make the faulty 
assumption that species are lost randomly from communities as a 
result of anthropogenic change (Lepš, 2004; Wardle, Bardgett, 
Callaway, & Putten, 2011). Instead, non-random loss of species 
is likely the norm (Gaston, 2010; Wardle, 2016). Fundamentally, 
non-random species loss arises from a pattern that characterizes a 
broad range of communities: species vary in their abundances, with 
often only a few highly abundant species and many uncommon or 
rare species. All else being equal, uncommon and rare species are 
more susceptible to loss by virtue of having low abundances (Fischer 
& Stocklin, 1997; Leach & Givnish, 1996; Thomas, 1994; Wilsey & 
Polley, 2004), whereas common species are least likely to be lost 
due to their high abundances (Duncan & Young, 2000). The traits 
that confer abundance also are thought to determine the impacts 
of species loss on ecosystem functioning (Grime, 1998). Rare spe-
cies typically have weak effects on ecosystem processes (except in 
the case of keystone species; Power et al., 1996). Common species 
have large effects on ecosystem processes if they are dominant in 
the community (Avolio et al., 2019), as predicted by the mass ratio 
hypothesis (Grime, 1998). Consequently, non-random loss of rare 
versus. common species should have dramatically different effects 
on ecosystem functioning (Sala, Lauenroth, McNaughton, Rusch, & 
Zhang, 1996).

Given that non-random loss typifies ‘real-world’ communi-
ties, it is crucial to understand the nature of non-random species 
loss because such scenarios of loss likely vary dependent on the 
type of anthropogenic change. For example, loss of rare spe-
cies can occur with extreme drought (Hoover, Knapp, & Smith, 
2014; Tilman & Haddi, 1992) and altered disturbance regimes 
(Koerner et al., 2014), whereas loss of common species has been 

found with chronic nutrient deposition (Avolio et al., 2014; Isbell  
et al., 2013) and selective harvesting (Gaston, 2010). In addi-
tion, duration and magnitude of anthropogenic perturbations are 
likely important. The hierarchical response framework predicts 
that chronic resource alterations resulting from anthropogenic 
change will result in the largest impacts on ecosystem function 
when turnover (loss or change in identity) of dominant species 
occurs (Smith et al., 2009). Similarly, large magnitude pulse per-
turbations, such as climate extremes, are also expected to invoke 
large changes in ecosystem function if dominant species are im-
pacted (Smith, 2011).

When compared to the numerous BEF experiments manipulat-
ing richness randomly (e.g. Cardinale et al., 2011), far fewer studies 
have imposed scenarios of non-random loss of species (Isbell, Losure, 
Yurkonis, & Wilsey, 2008; Losure, Wilsey, & Moloney, 2007; Smith 
& Knapp, 2003; Smith, Wilcox, Kelly, & Knapp, 2004; Zavaleta & 
Hulvey, 2004; Zobel, Zobel, & Rosén, 1994). In the few cases where 
non-random loss has been considered experimentally, richness ef-
fects on ecosystem functioning can be smaller (e.g. Smith & Knapp, 
2003) or larger (e.g., Zavaleta & Hulvey, 2004) than observed in ran-
dom loss experiments. Observational studies in natural systems mir-
ror these results; richness has effects on ecosystem function that are 
not consistent (Adler et al., 2011; Grace et al., 2007), opposite (Grace 
et al., 2016) or smaller than (van der Plas, 2019) those observed in 
random loss experiments (Cardinale et al., 2011; De Laender et al., 
2016). These conflicting views of the importance of biodiversity 
in driving ecosystem functioning point to the need to consider ‘re-
al-world’ (non-random) patterns of species loss versus those simu-
lated in the majority of BEF experiments (Wardle, 2016; Wardle et al., 
2011). Resolving these conflicting perspectives is key to both under-
standing and forecasting future ecosystem functioning and stability.

Here, we compare the effects of anthropogenic environmental 
changes to the effects of two scenarios of non-random species loss 
on a key ecosystem function: aboveground net primary productiv-
ity (ANPP) and species richness. We use data from 16 experiments 
which yield 23 treatments (duration from 2 to 28 years, Table 1) 
that manipulated nutrients (addition of N, P and/or K), water (irri-
gation to alleviate water limitation or shelters to simulate extreme 
drought), elevated CO2, increased temperature, fire (present or ab-
sent), grazing by a native large vertebrate (bison present or absent), 
herbivory by other vertebrates (e.g. deer, rabbits) or invertebrates, 
or non-random species loss. Our meta-level analysis (sensu Vetter, 
Rucker, & Storch, 2013) controlled for potentially confounding vari-
ables (climate, soils, vegetation type) that complicate findings from 
meta-analyses that span disparate sites. Instead, we include only ex-
periments conducted at the Konza Prairie Biological Station (Kansas, 
USA) in native mesic grassland ecosystems with similar soils and ini-
tial plant species compositions.

We test the hypothesis that effects of non-random alterations 
in plant richness are comparable, may exceed or may be far less than 
the effects of anthropogenic environmental changes on ecosystem 
function. We specifically contrasted the impacts of two alterna-
tive ways in which species loss may occur non-randomly in natural 
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systems with anthropogenic change: (a) rare species are lost first, 
and thus species loss is inversely related to abundance (Fischer & 
Stocklin, 1997; Leach & Givnish, 1996; Wilsey & Polley, 2004) or 
frequency or occurrence in the community (Smith & Knapp, 2003) 
or (b) where a dominant species is lost (Gaston, 2010). Following 
Avolio et al. (2019), we define dominant species as a species that 
has high abundance relative to other species in a community and 
proportionate effects on ecosystem function. Consistent with the 
mass ratio hypothesis (Grime, 1998), we predicted that the loss of 
dominant species would have larger impacts on ecosystem func-
tion than changes in richness via the loss of uncommon species. 
This expectation challenges previous findings that random bio-
diversity loss (i.e. via changes in richness) drives changes in eco-
system function (Hautier et al., 2015; Hooper et al., 2012; Tilman 
et al., 2012). Furthermore, we expected the effects of dominant 
species loss would have comparable or even larger effects on eco-
system function than other anthropogenic environmental changes.

2  | MATERIAL S AND METHODS

The 23 datasets utilized in this analysis are from 16 experiments 
(Table 1) performed at the Konza Prairie Biological Station, a National 
Science Foundation Long-Term Ecological Research (LTER) site. Konza 
Prairie is a 3,487-ha tallgrass prairie preserve located in the Flint Hills 
region of northeastern Kansas on the western edge of the historic 
tallgrass prairie distribution (39.11°N, 96.61°W). Data were collected 
over the period of 1983–2012. We chose this time period because 
it encompassed the greatest number of experimental manipulations. 
Some experiments span that entire time frame, while others were as 
short as 2 years (Table 1). Experiments included in this study either 
altered resource availability or manipulated the plant community. The 
latter was done by either removing 100% of a dominant grass species 
(either Andropogon gerardii or Sorghastrum nutans) or non-randomly 
reducing richness from an average of ~16 species per 0.5 m2 plot to 
either 4–6, 7–9 or 10–12 species per 0.5 m2 plot by removing species 

TA B L E  1   Summary of the 16 experiments comprising 23 treatments utilized in the meta-level analyses

Experimental variable Treatment levels used in analyses Study period (no. years) Source

Nitrogen addition 0 or 100 kg N · ha−1 · year−1 2003–2012 (10 years) Avolio et al. (2014)

Nitrogen addition 0 or 100 kg N · ha−1 · year−1 2008–2012 (5 years) La Pierre, Blumenthal, Brown, Klein,  
and Smith (2016)

Nitrogen addition 0 or 100 kg N · ha−1 · year−1 1986–2012 (26 years) Collins, Knapp, Briggs, Blair, and 
Steinauer (1998)

Nitrogen addition 0 or 100 kg N · ha−1 · year−1 1998–1999 (2 years) Silletti, Knapp, and Blair (2004)

Phosphorous addition 0 or 100 kg P · ha−1 · year−1 2003–2012 (10 years) Avolio et al. (2014)

Phosphorous addition 0 or 100 kg P · ha−1 · year−1 2008–2012 (5 years) La Pierre et al. (2016)

Potassium addition 0 or 100 kg K · ha−1 · year−1 2008–2012 (5 years) La Pierre et al. (2016)

Water addition Non-irrigated or Irrigated 1991–2011 (21 years) Collins et al. (2012)

Drought Ambient rain or ~66% decrease 2010–2011 (2 years) Hoover et al., (2014)

CO2 Chamber ambient or 100% enrichment  
(ANPP only)

1989–1996 (8 years) Owensby, Ham, Knapp, and  
Auen (1999)

Warming Unheated or ~+2°C year round 2003–2011 (9 years) Fay et al. (2011)

Fire Unburned or annual burn (ANPP only) 1984–2011 (28 years) a

Fire Unburned or annual burn (ANPP only) 1989–1997 (7 years) a

Fire Unburned or annual burn 1986–2012 (26 years) Collins et al. (1998)

Fire Unburned or annual burn (Species comp only) 1983–2000 (18 years) a

Bison grazing Unfenced or bison (large herbivore) exclosure 2007–2008 (2 years) Knapp et al. (2012); Koerner et al. (2014)

Vertebrate herbivory Unfenced or deer and small herbivore 
exclosure

2009–2012 (4 years) La Pierre, Joern, and Smith (2015)

Vertebrate herbivory High vertebrate density or no vertebrates 1985–1986 (2 years) Gibson, Freeman, and Hulbert (1990)

Invertebrate herbivory Untreated or insecticide aboveground 2009–2012 (4 years) La Pierre et al. (2015)

Invertebrate herbivory Untreated or insecticide aboveground 1985–1986 (2 years) Gibson et al. (1990)

Invertebrate herbivory Untreated or insecticide belowground 1985–1986 (2 years) Gibson et al. (1990)

Dominance removal Control, 100% Andropogon gerardii removal,  
or 100% Sorghastrum nutans removal

1998–1999 (2 years) Silletti et al. (2004

Richness decrease Untreated (14–16), 10–12, 7–9, or 4–6 species 2000–2001 (2 years) Smith & Knapp (2003)

Note: For each experimental variable, the treatment listed in boldface was designated as the reference (control). Detailed methods for each 
experiment can be found in the publication listed under Source.
aDescription of methods are available online: http://lter.konza.ksu.edu/Metho ds%20Manual. 

http://lter.konza.ksu.edu/Methods Manual
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based on their rank abundance (relative frequency in the community) 
from the lowest rank (least frequent species) until the target range 
of richness was achieved (see Smith & Knapp, 2003 for further de-
tails). For most experiments, treatment response (ANPP and plant  
community richness) was measured annually.

To evaluate responses of productivity to different drivers, we 
utilized 22 datasets comparing mean annual net primary production 
(ANPP) in reference plots with plots manipulating: available soil ni-
trogen (N), available soil phosphorus (P), available soil potassium (K), 
precipitation amount (both addition and reduction), atmospheric 
CO2 concentration, air temperature, fire, grazing by large ungulates 
(bison), herbivory by deer and small mammals, herbivory by inver-
tebrates, plant species richness and dominant species abundance 
(Table 1). These analyses use the mean ANPP across all replicates of 
a treatment for a given year. By comparing multiple years of annual 
treatment means, we were able to test for consistent differences be-
tween responses of 13 different environmental change drivers. For 
each sampled year of an experiment, we use mean ANPP across all 
replicates of a treatment to derive a metric to test for ANPP response 
to environmental change following Tilman et al. (2012). The log re-
sponse ratio was calculated for each year of each experiment using 
the equation:

where ANPPm represents the annual average of productivity in manip-
ulated plots of an experiment in a certain year, and ANPPc represents 
the annual average of ANPP in reference (control) plots of the same 
experiment and year. Reference plots were unmanipulated or in the 
case of fire, unburned, or for grazing, grazed. In addition, control plots 
with ambient (unmanipulated) plant richness (~average of 16 species 
per 0.5 m2; Smith & Knapp, 2003) and naturally high abundance (>80% 
cover; Silletti & Knapp, 2002) of the dominant, productive C4 grasses 
(Andropogon gerardii and Sorghastrum nutans) were compared to those 
in which either richness was non-randomly reduced (i.e. richness 
decrease treatments: 10–12, 7–9 or 4–6 target richness) or where a 
dominant plant species was removed completely (i.e. dominant species 
removal treatments: 100% of either A. gerardii or S. nutans).

Following Tilman et al. (2012), the absolute values of the re-
sponse ratio were used to estimate the magnitude of response of 
manipulated compared with reference plots without the potentially 
confounding impact of including directionality of responses. Log 
response ratios were averaged across years and experiments for 
each driver type and compared using a one-way ANOVA and Tukey-
adjusted multiple comparison of least-square means using proc 
MIXED in SAS (Version 9.3).

Similarly, we explored the responses of plant species richness 
(the number of species within a plot) to 12 different types of anthro-
pogenic drivers (no species composition data was available for CO2). 
Here we used species composition data from 20 datasets. We calcu-
lated the log response ratio of richness (ln(RR)Rich) using Equation (1) 
and then ran the same statistical tests.

Finally, we examined community compositional shifts with the 
long-term manipulations of nitrogen, precipitation amount and fire 
frequency. To identify community shifts, plant community compo-
sition data after 15 years of manipulation were analyzed. We first 
visualized differences in community composition using non-met-
ric multidimensional scaling (NMDS) plots. Second, we tested for 
significant differences (α = 0.05) between mean centroids of treat-
ment and control communities for each experiment by conducting 
a PERMANOVA (Anderson, 2001) analysis using a Bray–Curtis 
resemblance matrix and 999 simulations. Lastly, we conducted a 
similarity percentage analysis (SIMPER; Clarke, 1993) to quantify 
the relative contributions of each species to the divergence of com-
munity composition between manipulated and control plots. All 
multivariate analyses were conducted in PRIMER 6 (Version 6.1.13).

3  | RESULTS

Across all years of the 16 experiments, ANPP was affected the 
most by the addition of N (100 kg/ha) or the complete removal of 
a dominant species (Figure 1a). The overall effect of N addition was 
to significantly increase productivity, whereas removal of a domi-
nant species had the opposite effect. Precipitation manipulations, 
either as irrigation or imposed drought, and fire were intermediate 
in their effects on productivity (Figure 1a). Both water addition and 
fire significantly increased productivity while drought decreased 
productivity. There were no long-term temporal trends in the effects 
of nitrogen addition, water addition or fire (Figure 2). On the other 
hand, the loss of uncommon species (richness decrease, Figure 1a) 
had a relatively small, yet positive effect on productivity. This ef-
fect was not significantly different from any of the other treatments, 
including manipulations of P, K, CO2, temperature, grazing and inver-
tebrate/vertebrate herbivory.

Species richness responded most strongly to fire, grazing by a na-
tive large herbivore and N addition (Figure 1b). Frequent fire, N ad-
dition and the removal of grazers led to a significant loss of species. 
Richness responses to all other treatments, except species removals, 
were relatively minor and similar in magnitude (though differing in 
directionality, for example irrigation decreased richness, whereas 
drought increased richness; Figure 1b). Non-random species loss (re-
moval of uncommon species) resulted in the greatest absolute loss 
in richness, but the magnitude of this loss did not differ from that 
of fire, N addition, grazing or removal of a single dominant species.

Of the anthropogenic drivers in which there were long-term 
records of plant community composition (N, fire and water addi-
tion), all three drivers significantly shifted plant species composition 
(Figure 3). In the case of water and N additions, compositional shifts 
were driven primarily by a large increase in abundance of the pro-
ductive, perennial C4 grass Panicum virgatum (Table 2). In contrast, 
compositional shifts with fire resulted primarily from the loss of the 
less productive perennial C3 grass Poa pratensis, and increased abun-
dance of other, more productive perennial C4 grasses S. nutans and 
Schizachyrium scoparium (Table 2).

(1)ln
(
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)
ANPP
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|||||
ln
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ANPPm

ANPPc

)|||||
,



     |  5Journal of EcologySMITH eT al.

4  | DISCUSSION

Our analysis provides strong evidence that the complete loss of 
a dominant plant species or a shift in abundance and identity of 
dominant species (without loss) can cause large reductions (or in-
creases) in productivity (ANPP), a key ecosystem function in grass-
lands. Importantly, mass ratio effects, resulting from the removal 
of a dominant or altered abundance or identity of dominants, can 
far exceed the effects of non-random loss of uncommon and rare 
species on ecosystem functioning. We found that removal of a 

single dominant species strongly reduced productivity, as pre-
dicted by the mass ratio hypothesis (Grime, 1998) and as found in 
other dominant species removal studies (Avolio et al., 2019). The 
magnitude of this effect on ANPP was comparable to that resulting 
from chronic N addition and irrigation, though opposite in direc-
tionality. This contrasting effect was due to chronic N and water 
additions causing the replacement of the co-dominant grasses by 
a single and more productive C4 grass (P. virgatum; Wilcox, Blair, 
Smith, & Knapp, 2016), as well as a highly productive annual forb 

F I G U R E  1   Relative effects (log response ratio) of anthropogenic 
environmental drivers (red, blue and yellow bars; see Table 1), 
non-random species loss (green bars; dom. removal = removal 
of the dominant species only; rich. decrease = removal of rare 
or uncommon species only) on (top) ecosystem productivity and 
(bottom) plant community richness. Shown are means (±1 SE) of 
absolute values of the log response ratios for aboveground net 
primary productivity (ln(RR)ANPP) and species richness (ln(RR)Rich; 
see text for details). Note, richness data were not available for 
the CO2 experiment. All statistical results are from one-way 
ANOVAs (ANPP: F12,239 = 9.07, p < .001; Rich: F11,149 = 5.64, 
p < .001). Significant differences (α = .05) between treatments are 
represented by different letters. ±Symbols represent the direction 
of the mean effect of a treatment. Numbers in parentheses above 
bars indicate the number of studies per manipulation category for 
both panels
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F I G U R E  2   Temporal trends in effect sizes of aboveground 
net primary production (ANPP) for three anthropogenic drivers 
(±1 SE). Significant differences (α ≤ .05) between time periods are 
represented by different letters. N: F4,22 = 3.42, p = .026; Fire: 
F2,49 = 0.07, p = .991; Water: F3,36 = 3.80, p = .018
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F I G U R E  3   Non-metric multidimensional scaling based on  
Bray–Curtis dissimilarity for long-term fire (red circles), irrigation 
(blue squares) and nitrogen (green triangles) experiments. Each point 
is the centroid for a given cluster of points (±1 SE). The light colours 
are the centroids of the reference plots for each experiment, while 
the dark colours are the treatment plots for each experiment. 
This is a snap shot in time showing how the control and treatment 
plots are different after 15+ years of manipulation. All treatment 
communities are significantly different than reference communities 
based on PERMANOVA analysis (Nitrogen: df = 1,6, Pseudo-
F = 14.278, p = .0127; Irrigation: df = 1,40, Pseudo-F = 3.505, 
p = .011; Fire: df = 1,14, Pseudo-F = 8.407, p = .001)
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species (H. annuus). As further support for the importance of mass 
ratio effects, the removal of uncommon and rare species had much 
smaller impacts on productivity than the loss of a single dominant 
species or other anthropogenic changes, such as fire, N and water 
additions. Moreover, removal of uncommon and rare species sur-
prisingly increased productivity, rather than reducing ecosystem 
function as widely observed with simulated random loss of species 
(Cardinale et al., 2012; Hooper et al., 2012; Tilman et al., 2012). 
This increase in productivity was due to an increase in biomass of 
the dominant C4 grasses with the loss of uncommon and rare spe-
cies (Smith & Knapp, 2003).

With respect to richness effects, the largest change in richness 
occurred with non-random species loss, either because of removal 
of uncommon/rare species or a single dominant species. In both 
cases, richness decreased significantly. The facilitative role that 
dominant species may play in maintaining richness has been noted 
previously (Smith & Knapp, 2003; Stachowicz, 2001), suggesting 
that in this system dominant species may play a foundational role 
by modifying environmental conditions to allow coexistence of less 
abundant species (Ellison et al., 2005). However, other studies have 

found an increase in richness with removal of a dominant species 
(Avolio et al., 2019; Lepš, 1999). Therefore, the effects of loss of 
dominants on richness may depend on whether the dominant plays 
a facilitative versus competitive role in the community. The reduc-
tion in richness that we observed with the loss of the dominant 
species did not differ, however, from that resulting from other an-
thropogenic changes. Indeed, fire, grazing by bison and N addition 
resulted in similar changes in richness as observed with non-ran-
dom species loss. Hautier et al. (2015) found similar responses of 
richness. In their case, addition of 95 kg N/ha and herbivore re-
moval both decreased richness, whereas removal of fire increased 
richness. Thus, short-term manipulations of richness and domi-
nance resulted in either direct or indirect declines in richness that 
were comparable to losses observed with long-term annual burning 
and N addition. However, despite similar losses in richness, only the 
removal of dominant species significantly affected productivity. 
This effect of dominant species removal suggests that declines in 
richness are likely not driving the productivity responses observed.

Our findings build on previous experiments (Hautier et al., 
2015; Hooper et al., 2012; Tilman et al., 2012) to provide additional 

TA B L E  2   SIMPER results for fire, water and nitrogen long-term experiments

Species Functional group
Av. abundance in 
reference

Av. abundance  
w/fire Contrib.% Cum.%

(a) Fire

Poa pratensis C3 grass 35.19 0.00 15.10 15.10

Andropogon gerardii C4 grass 55.18 55.13 10.45 25.55

Solidago canadensis C3 forb 22.67 0.03 9.52 35.07

Sorghastrum nutans C4 grass 2.78 16.68 6.14 41.21

Lespedeza violacea Legume 2.99 14.50 5.88 74.09

Schizachyrium scoparius C4 grass 2.51 15.65 5.63 52.72

Species Functional group
Av. abundance in  
reference

Av. Abundance  
w/irrigation Contrib.% Cum.%

(b) Water

Panicum virgatum C4 grass 27.57 48.10 22.46 22.46

S. canadensis C3 forb 7.24 25.14 13.84 36.29

A. gerardii C4 grass 62.24 66.14 11.50 47.79

S. nutans C4 grass 19.57 19.00 10.47 58.26

Amorpha canescens Legume 8.05 16.10 8.75 67.02

S. scoparium C4 grass 10.48 2.24 5.47 72.48

Species Functional group
Av. Abundance in 
reference

Av. abundance  
w/nitrogen Contrib.% Cum.%

(c) Nitrogen

P. virgatum C4 grass 33.31 95.94 32.81 32.81

A. gerardii C4 grass 41.00 3.56 18.70 51.51

Helianthus annuus C3 annual forb 0.06 31.00 14.71 66.22

S. scoparius C4 grass 11.81 0.00 6.54 72.76

S. nutans C4 grass 10.38 0.00 5.31 78.07

Note: Results are for the last year of available data. Only species that contributed more than 5% to the difference between treatment and control 
plots were included. All species are perennial unless otherwise noted.
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mechanistic insight into the relationship between ‘real-world’ pat-
terns of species loss and altered ecosystem functioning. As pro-
posed by Grime (1998), we found that mass ratio effects rather 
than declines in richness per se is a key mechanism driving loss in 
function and underlying ecosystem responses to anthropogenic 
drivers in natural plant communities. There are several lines of 
evidence to support this hypothesis. When richness was directly 
manipulated with removal of uncommon/rare species, the largest 
richness loss occurred, but productivity increased rather than de-
creased. When species were lost with long-term fire, irrigation and 
N additions, the impacts of these changes in richness on productiv-
ity were inconsistent. Long-term annual burning resulted in some 
of the largest declines in richness, yet productivity was increased 
rather than reduced. Similarly, chronic N additions caused a moder-
ate decrease in richness, but the largest increase in productivity. In 
contrast, although irrigation increased productivity, there was little 
change in richness. When delving deeper into the effects of these 
anthropogenic changes on plant community composition, what is 
clear is that composition changed significantly with these manip-
ulations and that the primary determinant of the compositional 
change was not richness change but rather reduced abundance of 
dominant species, a change in their identity and/or complete loss 
of a dominant.

Collectively, our results suggest that future research aimed at 
understanding the impacts of anthropogenic change on ecosystem 
function should elucidate the nature of plant community change, par-
ticularly the identity and degree of change of species abundances and 
dominance, and in turn, how these different ways of altering com-
position may affect ecosystem functioning (Magurran, 2016). Several 
studies have examined the effects of changes in species evenness 
via either changing species abundances (Sonkoly et al., 2019; Wilsey 
& Polley, 2004) or reducing abundance of a dominant species (Isbell 
et al., 2008; Smith & Knapp, 2003), with varying results. Wilsey and 
Polley (2004) found that a change in evenness from a maximum level 
to a realistically low level has little effect on productivity when com-
pared to random loss of species. Similarly, Isbell et al. (2008) found 
little effect of evenness when comparing realistic extinction scenarios 
(four vs. a single species = monocultures of a dominant grass). In con-
trast, Sonkoly et al. (2019) found that a reduction of evenness had a 
positive effect on productivity, as a result of increased abundance of 
the perennial dominant grasses. Smith and Knapp (2003) also found 
that the effects of reducing abundance of the dominant grasses (or 
increasing evenness) were large, but that non-random species loss 
had no significant effect on productivity. Clearly, additional research 
is needed to understand how changes in species evenness may affect 
ecosystem function (Hillebrand, Bennett, & Cadotte 2008). We con-
tend, however, much less is known about how loss of dominant spe-
cies or changes in their identity impacts ecosystem function (Avolio 
et al., 2019), and future research should be devoted to understanding 
the consequences of this and other dimensions of plant compositional 
change for ecosystem functioning and stability.

In summary, the results presented here are in direct opposition 
to the numerous studies suggesting that random losses of richness 

decrease ecosystem function as much or more than other anthro-
pogenic changes (Duffy, Godwin, & Cardinale, 2017; Flombaum, 
Yahdjian, & Sala, 2017; Hautier et al., 2015; Tilman et al., 2012). 
However, an important difference between our study and others is 
that we manipulated richness non-randomly to mimic scenarios of 
species loss that occur in natural systems (e.g. Gaston, 2010; Leach 
& Givnish, 1996; Lepš, 2004; Wardle, 2016). As such, our results can 
resolve conflicts regarding the generality of the impact of biodiver-
sity on the function of ecosystems (Duffy et al., 2017). We propose 
that much of the effect of species loss in natural systems is likely 
indirect via mass ratio effects (Grime, 1998), which may cascade to 
alter species richness. Indeed, because direct removal of a dominant 
species and anthropogenic changes (e.g. irrigation and N additions) 
lead to both large shifts in the abundance and identity of dominant 
species, as well as in alterations in richness, this has likely con-
founded attribution to changes in ecosystem function and stability in 
the past. Our work suggests that conservation efforts should focus 
on identifying those dominant plant species that are crucial for main-
taining ecosystem function, as well as other aspects of biodiversity 
(e.g. species richness; Koerner et al., 2018). Given that a universal 
feature of natural communities is an uneven distribution of species 
abundances in which only a few species dominate (Whittaker, 1965), 
the management or restoration of these important dominant species 
and consideration of their identity, rather than simply focusing on 
the number or evenness of species in a community, will be critical for 
maintaining ecosystem functioning and services in the face of global 
environmental change.
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